TIPE SI N2

Formation théorique

Déroulement

- Partie Mécanique
- Les servo-moteurs
- Le microcontoleur
- Sa programmation

Partie mécanique

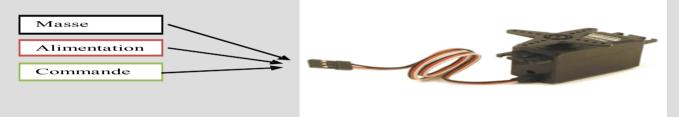
- Conseils
- Modélisation
- Réalisation

Conseils

- Respecter la symétrie le plus possible
- Utiliser des multiplicateur de vitesse
- Ne pas détériorer les moteurs
- A commencer en priorité

Modélisation

- Utiliser solidworks pour la création de pièce
- Utiliser cosmos (ou un truc du genre) pour l'animation
- 3 TP de 4h pour vous former


Réalisation

- Modéliser les pièces
- Aller voir les profs de SI

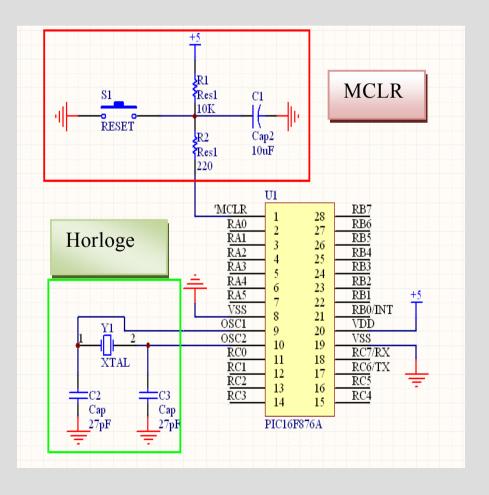
servo-moteur

Description des Servomoteurs utilisés.

Un servomoteur est un moteur incluant une partie asservissement. En effet ce type de moteur est alimenté en continu en 5 volt, mais on peut commander sa vitesse en faisant varier son rapport cyclique. Ceci dit, nous devons en tout cas maintenir une période de 20 ms.

En délivrant à la sortie de notre pic une tension 5V durant 1 ms puis de 0V pendant 19 ms, le moteur va tourner dans le sens anti-horaire.

En délivrant à la sortie de notre pic une tension 5V durant 1,5 ms puis de 0V pendant 18,5 ms alors nos servomoteurs n'auront aucune rotation.



En délivrant à la sortie de notre pic une tension 5V durant 2ms puis de 0V pendant 18ms, le moteur va tourner dans le sens horaire.

Microcontroleur

Pour fonctionner, le pic doit avoir un minimum de branchement. Nous devions donc brancher les bornes 8 et 19 à la masse, ainsi que la borne 20 au +5V. Nous devions également réaliser un montage MCLR afin de redémarrer le pic si le programme bloquait et un circuit Horloge afin de cadencer le PIC a une fréquence imposé par le Quartz utilisé (nous avons choisit 16 MHz).

Programmation

- Langage C
- Faire un dossier par programme